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FOREWORD

The present report is one of a series of three reports
which describe analyses and computational procedures developed
for describing the behavior of high speed-turbulent boundary
layers under conditions involving both heat transfer and
arbitrary pressure gradient. Part I,serves as a summary report
and describes the analysis which is utilized in the numerical
calculation scheme. 1In Part II, the fundamental properties of
of the compressibility transformation used in the analysis
are examined in detail. pPart III, describes the numerical and
computational procedures involved and serves as a computer
program manual.

The titles in the series are:

Part I Summary Report - "An Investigation of the High
Speed Turbulent Boundary Layer with Heat Transfer
and Arbitrary Pressure Gradient," by C. Economos
and J. Boccio.

part II- "The Compressibility Transformation - General
Considerations,"” by C. Economos.

Part I1I- "Computer Program Manual, by J. Schneider and
J. Boccio,
This investigation was conducted for the Langley
Research Center, National Aeronautics and Space Administration
under Contract No. NAS1-8424 with Mr. Kazimierz R. Czarnecki
as the NASA Technical Monitor.

The contractors' report number is GASL TR-719.
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SUMMARY

This report describes the analysis developed for investi-
gating the behavior of high-speed turbulent boundary layers
under conditions involving both heat transfer and arbitrary
streamwise pressure gradient. The approach utilizes a
compressibility transformation in conjunction with an integral
technique to describe the fluid-dynamic behavior. The
corresponding thermodynamic behavior is described by implicit-
finite~-difference solution. of the energy conservation eguation
written in terms of total enthalpy.

Within this framework the turbulent Prandtl number is
included as a parameter and provision for its spatial variation
by means of a special subroutine package, which allows the
incorporation of a variety of arbitrarily selected models.
Other options include the use of either eguilibrium air
chemistry or the perfect gas assumption.

One feature of the analysis involves the use of certain
correlative procedures developed in Part II of this report.
In this latter document the properties of the transformation
theory were reexamined froma fundamental level with the aim
of overcoming some of its shortcomings and enlarging its
applicability to include the more general problem treated herein.
The details of the numerical and computational procedures
utilized to implement the analysis are presented in Part III
of this report. A variety of numerical results are presented
in this document. These include comparisons with other predictive
methods and with experimental data. Additional results showing
eddy viscosity, shear stress and mixing length distribution
in hidh-speed flows are also presented.
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AN INVESTIGATION OF THE HIGH SPEED TURBULENT BOUNDARY
LAYER WITH HEAT TRANSFER AND ARBITRARY PRESSURE GRADIENT

By C. Economos and J. Boccio

General Applied Science Laboratories, Inc.
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I. INTRODUCTION

The overall objective of the investigation described
in this report was the development, within the framework
of a compressibility transformation, a computer program
capable of describing the behavior of high-speed turbulent
boundary layers under conditions involving both heat transfer
and arbitrary streamwise pressure gradient. The desirability
of such an approach rests on the fact that no empirical assumptions
regarding the mechanism of turbulent momentum transport need to
be introduced insofar as the variable property (VP) flow field
is concerned. 1Instead, it suffices - to specify this behavior
in the transformed constant-property (CP) plane where a reliable
description is currently available, at least from a phenomeno-
logical point of view.

The idea of relating a VP boundary layer to a CP counterpart
is not new. 1In the case where the product of viscosity and
density is constant and the pressure gradient zero or of some
special form, the transformations of References 1 through 4
relate laminar two-dimensional compressible boundary layers to
corresponding incompressible ones. Investigations have also
been conducted to extend the concept of such transformations to
turbulent flows.- Some of the investigators were Laufer, Reference
5, Mager, Reference 6; Culick and Hill, Reference 7, Burggraf,
Reference 8, Coles, Reference 9, and Crocco, Reference 10.. Apart
from the.concept of a transformation, the hypotheses of an
effective temperature, a laminar film and a constant sublayer
Reynolds number have been used to represent the compressible
turbulent boundary layer by an incompressible counterpart. The
reader is referred to Coles for an excellent review,

The essential difference in treatment of laminar and
turbulent boundary layers is that laminar-boundary-layer theory
rests on firm physical grounds, whereas its turbulent counterpart
inevitably contains a certain element of arbitrariness due to
incomplete understanding of the turbulent shear process. Never-
theless. for the CP case, a guite accurate semi-empirical



formulation has been developed due mainly to the existence of a
substantial body of low speed experimental data. Unfortunately,
similar data for VP flows is virtually non-existent so that
extrapolation of CP concepts for use in high speed flows, is

at best, a questionable procedure.

The successful application of a transformation technique
requires, of course, the utilization of an adequate CP
formulation. This aspect will be discussed in some detail in
a subsequent section. However, the particular choice of com-
pressibility transformation is of paramount importance and its
selection demands careful scrutiny of the various approaches which
have been proposed,

The essential feature of the earliest approach (e.g.,
Mager and Burggraf) was the assumption that both the Reynolds’
stress and the stream function were invariant under the trans-
formation. It was Coles who later suggested that these
assumptions were neither warranted nor appropriate. Indeed, by
eliminating these arbitrary restraints, he was able to develop
a more realistic correspondence in the sense that the thermo—
dynamic state of the companion CP flow was entirely arbitrary.

Despite this significant advance, it was soon found that
the Coles transformation exhibited several important weaknesses.
Thus, for example, it was shown in Reference 11 that the detailed
mapping of velocity profiles obtained in high speed constant
pressure flows was incorrect; i.e., the CP "law of the wake" or
"defect law" was not recovered. In addition, the values of
skin friction coefficient inferred from the transformed profiles
were in considerable disagreement with the experimental data.
This latter deficiency was apparently eliminated, at least for
flows with moderate heat transfer, by replacing Coles "sub-
structure" hypothesis by the so-called "sub-layer" hypothesis as
outlined in Reference 11.

‘Additional evidence of the original transformation inability
to properly transform the wake region of VP velocity profiles was
presented in Reference 12. Here, extension to the case of mass
transfer at constant pressure was developed by modifying the
Coles stretching for the stream function. Analysis of a series
of velocity profiles obtained with helium injection indicated that
the wake portion of the profiles was systematically distorted with
increasing helium wall concentration. Ultimately, it was shown
that this distortion could be correlated by means of a density
ratio across the boundary layer. A more detailed discussion of



this aspect may be found in Reference 13 which constitutes Part
IT of this report.

(O3 &

0f added significance were the findings reported by
Bertram, Reference 14, Here, it was shown that for flows with
high heat transfer the Baronti-Libby form of the transformation
(Referénce 11) tended to overestimate the skin-friction co-
efficient. In Reference 13 this anamolous behavior was

examined in detail and it was found that this defect could be
eliminated by utilizing a modified form of the transformation
which associates a hidh speed constant pressure flow with heat
transfer to a CP counterpart with mass transfer. Basically, the
difference between this form of the transformation and that
developed in Reference 11 is due to the use of differing
"closure" principles to complete the formulation. Thus, in
Reference 11 it is assumed, a priori, that zero mass transfer
and pressure gradient map to zero mass transfer and pressure
gradient whereas in Reference 13 only the identity mapping for
zero pressure gradient is imposed.  Closure is then obtained by
satisfying the first compatability condition on the differential
equation for momentum with the mass transfer considered to be

an arbitrary parameter. It is interesting to note that the
closure rule utilized by Libby and Baronti, Reference 15, .is the
exact opposite of the aforementioned; i.e., zero mass transfer
is assuymed to prevail in both planes while the pressure gradients
are related by means of the first compatability condition. Lewis,
Reference 16, first examined the possibility of treating flows
with both mass transfer and pressure gradient and utilized both
the first and second compatability relations to obtain closure.
However, his development was somewhat restrictive and implied
that the condition pp = constant was a necessary condition for
application of the compressibility transformation to this more
general case. However, in Reference 13, it is shown that this
is not a necessary condition and a more general set of
compatability conditions are evolved which permit application of
this methodology to flows where the thermodynamic behavior is
quite arbitrary.

The main point of the foregoing discussion is to emphasize
that, at the present time, the concept of a compressibility trans-
formation is still in a developmental stage. Many questions
remain to be answered in this area and several important anamolies
gtill need to be resolved. Nevertheless, the approach which was
utilized in this study is believed to be the best which can be
formulated at this time. Specifically, there is utilized herein
the interpretation of the compressibility transformation proposed



in Reference 15 since a CP formulation with simultaneous pressure
gradient and mass transfer is not currently available.
Accordingly, it is recognized, at the outset, that the resulting
analysis will not be strictly applicable for the high heat trans-
fer case; i.e., W < 0.4. The analysis also incorporates the
empirical correlation developed in Reference 13 which eliminates
the distortion of the defect region of the velocity profiles.
Since this correlation was developed by examination of zero
pressure gradient profiles it is not known whether it is

strictly applicable to flows with pressure gradient. Nevertheless,
it was included herein in order that the general analysis, when
applied to zero pressure gradient flows, yield the improved
representation which this correlation provides.

This transformation was used in conjunction with a suitable
CP formulation and integral techniques to provide a description
of the fluid mechanical behavior. The thermodynamics is described
by means of a finite-difference solution of the conservation
equation for total enthalpy. The details of this development are
given in the next section while the resulting computer program
is described in Part III of this report, Finally numerical
results are compared with other prediction techniques as well
as with experimental results.



constant, taken here to be
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elements of ordinary differential equations,
c.f., Appendix A and Eq. (57 )

tri-diagonalized elements of the finite-
difference form of the energy equations,

c.f., Eq. (62)

functions of variable~grid-system and initial
step size, c.f., definitions following Eqg. (62 ).

constant, taken here to be 7.5
skin friction coefficient

column vector relating to right-hand-side of
the system of ordinary differential equations,
c.£., Appendix A and Eq. 67 )

rolumn vector relating to right-hand-side of
the finite-difference form of the energy
equation, c.f., Eg. (62)

functional forms, c.f., Eg. (60)

coefficients of power series relating g=g({),
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c.f., Appendix B

functional form, c.f., Appendix B, Eq. ('B5)
functional form, c.f.,, Appendix B, Eq. ('B6)
functional form, c.f., Appendix B, Eq. ( B7)
functional form, c¢.f., Appendix B, Eq. ( B8)

total enthalpy ratio, H/He

form factor or total enthalpy. ftz/sec2

He/he

. 2 2
static enthalpy, ft /sec
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ad =8 =

integral of velocity distribution, f ady
o

integral of velocity distribution, f ﬁ ﬁédﬁ
o

integral of density distribution, Iﬂ(l/ﬁ—l)dﬁ
conducitivity, lb/sec °r °
reference length, ft.

mixing length

external Mach number

pressure, lb/ftz; correlation parameter
"effective" Prandtl number, c.f., Eg. ( 4)

laminar Prandtl number-
turbulent Prandtl number

turbulent Prandtl number based upon static
temperature, c¢.f., Eq. ( 6 )

functional forms, c.f., Appendix A

Reynolds number based on momentum thickness
unit Reynolds number, 1/ft.

Reynolds number based on local external conditions

andAnormal coordinate

Reynolds number based upon boundary layer height;

g “e,QE/E)

coefficients of the power series expansion
relating pi to ¥, c.£., Eq. (gg )
functional form, c¢.f., Eg. (68 )

radius of body of revolution, £t.
temperature,. °R

ue/ae,o

velocities respectively along and normal to
body, ft/sec

1.
shearing velocity, (?@/5)2, ft/sec
T/ Tt

e

space coordinates respectively along and normal
to body, ft/sec
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local Reynolds number based on shear velocity,
(PG, 7/1)
variable-grid-system parameter, c.f., Fig. 4

parameters in the description of the incompressible
eddy viscosity, c.f., Eg. (42a) and (42b)

R

functional form, (1/¥ )Sfo(l/ﬁ)dy+

adiabatic exponént or intermittancy, c.f., Eqg. (73)
boundary layer height, ft.

displacement thickness, ft.

kinematic eddy viscosity, ft2/sec

v/6

0.5

ne /P

(B/i)

momentum thickness, ft

molecular viscosity, 1b sec/ft2

kinematic viscosity, ftz/sec

Coles scaling parameters

Coles wake parameter

wake parameter obtained from correlation, Eq. (' 71
density, 1b secz/ft4

incompressible momentum thickness normalized
with respect to boundary layer height

ou_ /B
e 2
shear stress, lb/ft
functional forms, c.f., Eq. (60)
skin friction parameter, (ﬁe/ﬁT)
Reynolds numbers based upon an initial unit

Reyriolds number: (peue/ue)o(x-xo);(5ﬁé/ﬁ)o(§4§o)



stream function

/i, ftz/lbmsec
7}

o ' s

incompressiblé displacement thickness normalized
with respect to boundary layer height

Subscripts
a pertains to axisymmetric problem
pertains to conditions external to boundary layer

flat plate

ae)

pertains to laminar flow

pertains to turbulent flow
pertains to total conditions
pertains to laminar sublayer edge

initial starting point
pertains to wall conditions

region from wall to edge of laminar sublayer

H H £ 0 w0 = 0

~

region from edge of laminar sublayer to edge of
boundary layer

2-D used to differentiate between two-dimensional
problems and axisymmetric problem

() maximum value within boundary layer
() . minimum value within boundary layer
(e} free-stream conditions

Superscripts

() as/dy

%) normalization with respect to corresponding
external value unless otherwise noted, i.e.,
4 = u/u

(—) pertains to properties in incompressible plane
unless otherwise noted



II. GENERAL FORMULATION

A, Fundamental Describing Equations for the VP Flow

The conservation equations describing the mean properties
of a two-dimensional turbulent compressible boundary layer
flow are taken to be the same as for laminar flow with the
molecular transport coefficients replaced by their turbulent
counterparts. It is further assumed that the requisite trans-
port parameters can be related to each other. That is,
the concept of an effective Prandtl number is introduced to
relate eddy conductivity to eddy viscosity. Accordingly, the
conservation equations in coordinates normal and parallel to
the body are taken to be*

Mass
9 d
% (Pw) + 55 (pv) =0 (1)
Momentum
dp
du _a_ll _ e é._ EE
Pu L PV S, T T Fx T oy Leetim, ] (2)
Energy
29 3g _ 3 . (p&#) 39 .2 - 1
Pug PV Sy T oy b By Hue/2Hgp e (151/%)
2 (3)
a(u/ue)
oy

* For 8implicity, the equations for planar flow are set down
here., The required modifications for axisymmetric flow are
discussed in Appendix ¢ . )




where

g E'H/He = stagnation enthalpy ratio
P€ = turbulent eddy viscosity
4 = molecular viscosity

The effective Prandtl number, P , is defined as
e

-1 -1.~-1
P, = {[P (1+ pe/B)] "+ [PT(l + B/pe)] 7} (4)

where subscripts L and T refer to laminar and turbulent
properties, respectively. It should be noted that as

(e + H) ~p P~ P

while for

(p€+u) = pe ; P, = P

To generate Equation (4) it is tacitly assumed that the con-~
ductivity K,is the sum of the laminar and turbulent counter-
parts and that

K=K + Ky = [(petu)/P_] (5)

The turbulent pPrandtl number PT as used in Equation (4)
can be referred to as the "total" Prandtl number since it
is associated with total enthalpy gradients. Recently,
Bushnell and Beckwith, Ref, 17, reviewed the relation between
this Prandtl number and that which is associated with static
enthalpy gradients; namely, Py. Neglecting third order
correlations, they concluded that the relation between P

T
and Py is given by
2
Ve 2T /oy (-1
P = + =1
Pp = Py {1 2He (Pt ) 39/3y ] (6)

10



By considering a power-law dependence between (g-dy)/ (1-dy)
and § ranging from approximately 1 for flat plate flows

to 2 for nozzle flows and examining available data for p. at
various Mach numbers and wall enthalpy ratios, they imply

and later demonstrate, that pp must depend on the upstream
history of the flow. In particular, it is shown that the
gquadratic variation between enthalpy ratio and velocity ratio,
which has been observed for tunnel wall boundary layers could
be accounted for by choosing values of Py greater than unity.

In the general formulation which is discussed in Section TI.F.5
spatial variation of Pgp can be introduced by means of subroutines
which allow the use of various models. Thus, as done in
Ref, 17, Equation (6) could be introduced if deemed appropriate.

Stream Function
In the ensuing development it will prove convenient to

introduce the stream function ¥(%,y) which satisfies Equation
(1) identically and is related to the velocity components by

pv = %% pu = - %% (7)
Boundary Conditions
The external boundary conditions are taken to be
u-u (x) s g-1@y~ o (8)
so that, in particular, Equation (2) yields
pu Mo M (9)
dx dx
while at the wall the "no slip" condition and the existence
of a laminar sublayer requires
via 0 ; pe€ -~ Ko7 g~ ogyt P PLw @y~ 0 (10)

In this case Equation (2) yields

11



du

0 u ""@”‘“’e”' §‘I; = 0 {11
Pe'e dx @ ey w v
where we have used (9) with 7 = B3u/dy. The remaining

variables, p, g,and/or their derivatives can formally be
considered to take on their respective wall values. 1In
practice, of course, the latter would be evaluated by
specification of one of several heat exchange configurations
at the surface (e.g., adiabatic wall, specified wall tempera-
ture, etc.) together with appropriate thermodynamic relations.

B. The Transformation Relations and Their Immediate Implications

After Coles, Ref. 9, there are now introduced three
scaling quantities which relate the spatial coordinates
and fluid dynamic variables of the VP flow with those of
a companion CP flow described by

U ov
Y + W 0 (12)
a5
¥ | — 3% Pe 3 3
— e e — ot == hagens 13

pua§+pva.y_ = +a_§ [(pe + &) ay3 (13)

T

pu = 5% Pv = - 3% (14)

wheré p and E are constants. In the further development
the scaling parameters will be modified somewhat 'in order to
insure’ that the physical properties of the Cp flow, p , [
do not appear explicitly in the analysis. Specifically,
the two flows are assumed related according to*

(x,y) = o(x)¥(x,y) (15)

* As indicated in Section I, closure of the transformation. in

the present formulation is obtained by mapping zero wall

mass transfer to zZero wall mass transfer. For a more generalized
formulation it would be necessary to replace Eg. (15) with a
modified stream function stretching of the form P-¥Py,=0 (b-¥,)
where @w,ww represent the wall values of stream function. This
aspect is discussed in more detail in Reference 13,

12
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il

(p/P) n(x) oy (16)

ol
%l
I

£(x) dx (17)

In terms of these transformation functions the partial
derivatives are related by

8 _d . o

Ox ¢ ax " 3x % (18)
p o

T =N = =

oy D oY

Application of these rules to the definition of the stream
functions, Eqg. (7) and (14) yields

u/u = M/o (19)

pv = (£/0) {pv) + ¥ (dlno/dx)~-(pu/o) (3y/3x) (20)

Thus, an immediate implication of Eq. (19) is
u/u = n/o (21)
e e

so that
uw/u_ = u/u
e e
Furthermore, as a consequence of Eq. (21) the following
correspondence between external conditions, initial conditions
and the mapping function is obtained:

(In §)'=(1n 7)'=(In T ) '+ld In(u v )/axI(x)' =0  (22)

where

13



G = @ge/ﬁ (23a)
= o /B (23b)
o, = “ﬁe/ﬁ“e'o (23¢c)

X = (ue,O/ue,O) (x=x) (234)
X = (ﬁe'o/i?) (X-X ) (23e)
()' = a/ax

and where the subscript zero refers to an initial streamwise
station. In addition to the correspondence between the

two external flows afforded by Eg. (22), two other inferences
may be developed by applying the transformation to the two
flows as y, ¥ - 0. Since Newtonian shear is assumed to apply
there, then

= F = In a-_ -
TS (B 3u/dy) . Ty = B(%u/dy) (24)
Thus, imposing the mapping rules to Eg. (24) and defining

a skin friction coefficient for the two flows in the usual
way yields

c/Sp = % piby, ‘ (25)
where

p=rm

=

A similar procedure applied to Equation (11) and the
corresponding one for the CP flow yields

=1 5~ =1
(

D AP ~ ~ o~ -
(In Ue)—(n/O)o(l/p)w(pwuw) on) “(d 1n u_/dax)

~ o~ — =2 -1 . (26)
- (77/0)o (v) (ue/Ve)o [3/3% 1n PB] = 0

where from Eq. (21) and (23) the initial values of 7 and 5,
i.e., ﬁo and 00 are related by

14



tﬁe/ﬁlo/[ue/Véja = <5/?’7)o (27)

The quantity @ is a convenient parameter appearingin the Cp
formulation to which these correspondence laws are coupled
and which is to be described subsequently. It is defined by

o = (ue/ﬁr) = J(2/8;) (28)
where ET denotes the shearing velocity, i.e.,

i = (7 /o 5 2

u. = (7.,/0) (29)

Equation (26) which is interpreted as relating the scaling
parameters 5, i to the unknown velocity distribution Ee and
to the known velocity distribution ue(x), indicates that a
zero pressure gradient flow in the physical plane maps into

a zero pressure gradient flow in the transformed plane if and
only if pl = constant, this implies that either £ ™ T or the
flow is adiabatic.

C. The Momentum Integral Conditions

In addition to the above compatibility condition, there
is now imposed the requirement that the scaling parameters are
to be selected so that the integral form of the VP momentum
equation maps into the corresponding form for the Cp flows.

The momentum integral equation for compressible flow is

§§>+ . ) d ln ue . d 1n pe + o d In ue 3
dx dx ax ax
(30)
e’e

where € and 6* are respectively the momentum and displacement

15



thicknesses. The corresponding thicknesses in the Cp flow
are 8 and &* and it is quite easy to show that the transfor-
mation requires

8 = 8/n (31)

while for the displacement thicknesses the relationship is

6
s*= (1/m [ [ (1/p-1)ay + & ] (32)
(o)

Accordingly, normalizing the CP thicknesses by the boundary
layer height and defining

T= e/
ﬁ:: E*/E
nEy/s

Equations (31) and (32) imply that the VP form factor (6*/8)
transforms like

1
6%/g = (1/D) [[ (1/p-1)af + Q ] (33)
o

Consider now the correspondence between 6 and © and
define a Reynolds number based on boundary layer height as

R = (ae,o/;) (6)

Then from the definition for Z and the fact that x = x(x), the
X-wise variation of 8 is given by -

16



d150 1 - N
—_— i Z ¢ L [
dy (x) {(InZ)* + (InR) '~ (1n7m) '}

However, the momentum integral equation in the CP plane
can be shown to be

(InR) ' + (1In%)' + (1nﬁe),' [2+8/7) =_(?52E‘21)"1 (34)

which when substituted into the above expression yields

dlng 1 2= -1 — . T .~
ERTX [(@RE) "-(InU )" (2+4/7) - (Inn) "]

or, in view of Equation (22)

o L B dln u_/v
din® _ L &%) "l 248/ [ (1n6) '+ (x) * ( _E?c_e—— )]

. - — (35)
+ (1nm) ' (1+V/2) }

Finally, substitution of Equations (35) and (25) in Equation (30)

yields after some manipulations the requirement that for the VP
momentum integral equation to transform to its CP counterpart

it is necessary that

5 T 5 oY) dlnue 6x
-(1n0) ' (2+/Z) + (1nf) ' (1+SV/T) + () 5 Lo -5 ]
dlny ) dlnp 0 N U
e .20 _
gy By - g B3 1 -@RE) (00 ) (n/ny) (oK),
e RD) Y (36)
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In suwmmary, the previous sections have shown that the
system of equations describing the velocity field of interest

in the VP plane, namely Equations (1) and (2) can be transformed
to their respective CP counterparts by introduction of the
transformation relations in Equations (15), (16) and (17)
provided that the correspondences between gross boundary-
layer-parameters are represented by Equations (21), (22),

(25), (26), (31), (33), (34), and (36).

It is significant to note at this junction that these
correspondences involve the functions [3/8y 1n pH],, and

n ~
£ ((1/p)-1]dy . Evidently, their evaluation requires a

knowledge of the energy field within the viscous layer. One
possible approach is the utilization of a Crocco integral for
total enthalpy, in which case p and g would be expressible as
a function of u. Then these functions could be related
directly to the present variables. An alternative approach
utilizes an "exact" solution of the energy Equation (3) by
finite-difference techniques. Both approaches are described
in detail in subsequent sections.

D, The Constant Properties Solution

Since successful exploitation of the transformation
approach depends to a considerable extent, upon the
availability of a suitable constant property formulation, it
is relevant to include in this study a discussion of the
present status of available prediction methods for the CP flow.

In this connection, it is noted that in recent years
Rotta, Ref. 18, 19 and Thompson, Ref. 20 reviewed the then
available procedures and concluded that prior to 1966 reasonable
performance could be obtained by application of the following
methods :

R the entrainment equation of Head, Ref. 21

. the strip-integral pethod of Moses, Ref. 22
the application of a constant eddy-viscosity
approach of Libby, Baronti,Napolitano, Ref. 23

. the hypothesis of an effective eddy-viscosity
proposed by Mellor and Gibson, Ref. 24,
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A - 5
Howeveyr, their s

us report indicated that even the best
available procedures at that time left room for improvement.
Fortunately, due to the re-emergence of interest in turbulent
boundary-layer behavior as a practical aerodynamic problem,
there have been numerous re-analyses of the boundary layer
problem since the Rotta-Thompson reviews. Thése newer
contributions have been categorized and assessed in the recent
AFOSR-IFP Conference at Stanford, Ref, 25. It is evident from
the Stanford meeting that many of these procedures can make
rapid, accurate predictions of the incompressible two-
dimensional turbulent boundary layer. High on the list are
the strip~integral method of Moses, Ref. 26 and the finite-
difference solution of Cebeci and Smith, Ref. 27,

Evidently the preceding development anticipated the use
of an integral technique for the current effort. In view of
the appraisal made by the AFOSR-IFP Conference on the method
of Moses as one of the more applicable integral approaches,
it would appear therefore, that this choice is justified.
The particular method actually employed is that of Ref. 28
which is virtually identical to that of Moses (Ref. 22) and
in particular includes and anticipates a modification which
is later introduced by Moses in Ref. 26.

In accordance with the selected method, the development
of the boundary layer is described by a set of three
equations containing three functions of the streamwise
coordinate, i.e., T¢(X), §(xX) and the Coles (Ref. 29) wake
parameter, 7 (X). The first two describing equations are Coles'
skin friction law and the von Karman momentum~-integral-
equation; the third equation is Moses' auxiliary equation
obtained by satisfying the momentum-integral-equation up .to
half the boundary-layer height. It has been shown in Ref., 28
that a modified form of the Clauser eddy-viscosity-model
(Ref, 30) yields improved predictions for flows with adverse
pressure gradients., This modification consists of taking the
momentum thickness, rather than the displacement thickness
as the length scale of the effective eddy viscosity. A
similar conclusion was also arrived at by Moses in Ref. 26
as indicated previously.
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Thus taking the work of Coles, Ref. 30, as a starting
point, a two layer model for the velocity is assumed, i.e.,*
—_ 2 - =
! <7<
RUeT)/(P 0 P S g
u = (37)

(38 [In( b =2T) + 203 -25")] 7n_ <7 <1

g

where use is made of the polynomial approximation of Moses,
Ref. 22, to Coles wake function. A direct consequence of
Equation- (37) is the skin friction law stating that:

(A/¢) [In(RU_b /p) +27] = 1 (38)

and the representation of the normalized displacement and
momentum thicknesses by

Q= a/p) (1 + m) (39)
T (8/0) [ (L47) - (A/@) [2+(19/6) 7+ (52/35) 127} (40)

Besides the momentum-integral-equation, Eq. (34), with the
values of § and ¥ specified above, and the skin-friction
law, Eqg. (38), a third equation necessary to link the three
variables R, ¥, T to the independent variable, X, is obtained
by intégrating the momentum equation to some 1 = T*< 1 , The
resulting equation is

* The constants A and b appearing in Equation (37) are
associated with the 'law of the wall" and are taken here to
be A=2.,43, b = 7.5,
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Fao T n* T* d1nT
peue R dx ° dx 45 dy 3 Yg
— (41)
™ ainE ez e T
~ n ~,2 o~ ~
- u udn - N+ 4 u dn-u ad7}
-J‘O } d‘x { IO IO

where 7T* is the value of shear at 7 = 7* .

At this point, following Ref. 28, a modified form of the
Clauser eddy viscosity model is introduced to describe the
shear, T# in terms of the three dependent variables R, ®, w.
As for the right-hand side of Eq. (41l) it can be expressed
in terms of the same variables with the help of Eq. (37). The
modified form of the eddy viscosity model is

F-Po B'u @ (42a)

€ +Vv =8 ﬁea* ﬁ(i) . o

and attempts to account somewhat for the effect of upstream
history by the choice of the length scale, 6‘HF_P_/H(x),

rather than the usual scale §*. With the originally quoted
value of the Clauser constant, B, changed from 0.018 to
0.016 (see Refs. 22 and 23), and with the flat-plate value-of

the form factor, ﬁF p.+ taken as approximately 1.32 then the
eddy-viscosity law becomes

(¢ + MVGé@ = 0,021 (42Db)
Noteworthy is that the law used by Moses, Ref. 26, estimates
a slightly greater value in that the eddy viscosity assumes

the form

(¢ + V»ﬁeg = 0.0225 + 125/(RU_) (42¢)
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Accordingly, substituting Eqg.  (37) and (42b) into Eq. (41)
and performing the necessary integration and differentiation
yields

. _ 2 _
{ﬁVA/ﬁ)L—4(A/o)(q2+2ﬁq3+2ﬁ q4)~(ﬁ!n*—2)(q5+2Wq6)]}(ln¢)' +

fl* Tj* _ _
(7 a7 - 4] Uaf (InR) '+{7* (a/9) (4 (8/0) (q3+27q,) -2q, (X| -2)]} (m)"
(e] O n*
n* n* - 2 = 2
+ {ZJ ddn - ﬁf Gdﬁ~ﬁ*}(ane)'—(l/ﬁ){ﬁ'(l+ﬂ)(A/¢) L (/M%) +
o (@)
12 ﬂ(l—ﬁ*)]—(l/&)z} =0 (43)

where the integrals and the quantities g
Appendix A.

l’2““are defined in

For convenience in the numerical analysis Eqg. (38) can be
differentiated yielding:

(1+o/A) (lnp) ' - (1n§>'—2(m'—<1nﬁe>' =0 (44)

In this manner the requisite CP solution is described by

the three equations, i.e., Eq. (34), (43), and (44) for the
three dependent variables @, T, R with the streamwise Reynolds
number ¥ as the independent variable.

Extensive comparisons of this integral method formulation
with experiments appear in References 22, 26 and 28 and indicate
good agreement. For completeness, a comparison is also in-
cluded here between this approach and a representative
finite-difference result due to Cebeci and Smith (Ref. 27).

As may be seen in Figures 1, 2 and 3 the agreement is quite
adequate,
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Returning to the general problem,it is seen that the CPp
formulaticn has added three additional differential equations
i.e., Eg. (34), (43),and (44) to the overall problem and in
addition increased the number of dependent variables by one.
This additional parameter, T, has been included to reflect
the dependence of the velocity profile représentation on the
varying external pressure distribution. Thus, as it was
implied before, assuming that the gu dependence on u is
known and that ug(x) is specified, the system of six
simultaneous differential equations involyes a total of
eight variables, with § considered as the independent one.*
Since the information which can be extracted from the trans-
formation itself, with regard to a rigorous mathematical
correspondence, has been depleted it is necessary to invoke
some phenomenological concept as will be now described to
complete the system of equations.

E. Determination of the Transformation Parameter & - The
Sublayer Hypothesis

As indicated in the introduction the main virtue of
the transformation technigue used here is that it minimizes
empiricism and in particular restricts its use for theé most
part to the CP flow regime. For the latter type of flow
some confidence in earlier heuristic theories has been pro-
vided by a substantial body of experimental results. The
single exception to this rule is the hypothesis which will
now be introduced to determine the stretching parameter O
thereby completing the transformation.

The hypothesis involves the assumption that there
exists some Reynolds number characterizing the VP boundary
layer which is invariant under the transformation. The

* It is noted here that had the more general transformation
procedure been adopted which accounts concurrently for mass
transfer and pressure gradient, then proper implementation
of this approach would require a suitable CP formulation in
which the above effects occur simultaneously. Since such a
formulation is not currently available, mass transfer has
been assumed zero in both planes.
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particular choice of Reynolds number made by Coles in his
initial application was the so-called sub-structure Reynolds
nunber wherin transport properties were evaluated at an
average temperature within the fully turbulent law-of-the-

wall region of the boundary layer. Crocco (Ref. 10) in a
critique of this approach indicates that the particular

choice of Reynolds number is not too critical, at least for
the adiabatic, zero pressure gradient case. On the other hand,
Baronti and Libby (Ref. 11) found that the use of-sub-structure
Reynolds number gave anomalous results with respect to the
transformation of the VP velocity profiles. 1In particular,

for external Mach numbers exceeding approximately 2.0 they
found that the "law of the wall" was not recovered upon
transformation of the profiles to CP form. Improved
correlation of the profiles was obtained by introduction of

a new hypothesis which postulates the invariance of the
sublayer Reynolds number; i.e., a Reynolds number based on
properties at the interface between the sublayer and the "law
of the wall" region. Evidently this later hypothesis also

has appeal on physical grounds since this Reynolds number can
be loosely interpreted as a minimum Reynolds number below which
laminar flow prevails. Further evidence of the appropriateness
of this hypothesis was presented in Ref. 15 in connection with
a study of constant pressure VP flows involving mass addition.

In view of these developments the sublayer hypothesis is
utilized in this current formulation. It is expressed by the
relation

s° s
= = 45
M o (45)
where subscript s corresponds to sublayer values. If the
transformation is applied to Eg. (45) there results
p 7 5 Ve
o s 1 s dy 1 s agt
s Ys "0 P s Ys "o P

24



Although Eg. (46) provides the final relation reguired
to complete the system of equations it should be noted that
once again there is reguired a knowledge of the thermodynamic
behavior of the VP fluid. Determination of this behavior and
a development of the final form of the working equations are
presented in the following sections.

F. Description of the Thermodynamic Behavior and Final Form
of the Working Equations

1.Simplified Approach

Before proceeding with the development of a more accurate
description of the thermodynamic behavior of means of a
finite-difference solution of Eg. (3) it is worthwhile to
consider the simplifications afforded by, and the ramifications
associated with, the use of a Crocco integral as the necessary
equation for relating P, M, etc. to the velocity distribution
u . Of course, severe limitations must be placed on any
analysis utilizing such an approach since the validity of
the Crocco integral as a solution of Eq. (3) is restricted to
rather specialized cases. Among those which may be cited are
the requirements of unity Prandtl number and constancy of edge
and wall conditions. Nevertheless, some success in describing
boundary layer behavior has been achieved by utilization of
this approach even for problems involving substantial violations
of the restrictions mentioned above. Since its implementation
requires relatively little effort a numerical program based on
exploitation of the approach was deemed appropriate. Accordingly,
a numerical computer program based on the following consid-
erations has been developed.

The Expressions for 5, ﬁ, o

It is assumed that the total enthalpy ratio within
the viscous layer can be represented by the relation

g=9g,+ (1-g)0 (47)

Then for a perfect gas, the density-velocity relation is
simply
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(L/B) = H, [g, + (1-g )ul + (1-H,) § (48)

where ﬁe is defined as the ratio between edge total and static
enthalpy. Then the integral

g 1
1. (M = (= - 1)am
;M = 03
and the term
3
fg§ np ]

can be expressed in terms of the dependent variables. 1In
particular, it can be shown that

I, (M= (5,9 -7 + H, (1-g )T, (M+(1-H ) I, (") (49)
where _
T’~
T = [ udm
and
T 2
I,(Mm = [ udn
‘o

can be obtained once Egq. (37) is substituted for u . For
the second term, the transformation formulae give

(l-gw)

g ,0 e,0

(é_gé) -

T
e ~ ~
5 (6/) (%, oV, o) (50)

For the terms involving viscosity, two choices are utilized.
One of these is a power law variation such that

i= /" (51a)

implying that
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3 ~} ( 2

T 1 = 4op (O

(ay Sl "y Ue o/M5) g o/Ve )
W w

In this case the term [3/3¥ 1n Eﬁ]w appearing in Eq. (26)

becones

[3/3y 1n Sﬁ]w = -(1-n) — (G _/@ ’(50/”0)(“e,o/“e,o)

(52a)

Also the term ps/l"s which appears in Eq. (46) can be written
@= =2 = (p) (53a)
s

In the second case, the Sutherland law is used. 1In
terms of the variables used here this can be expressed as

198.6 =~ 1
128-0 = 3/2
(1 + T, H) ( 5 ) /
~ e
B = - - (51Db)
(1/P) + 138'6‘H
e
te

Then instead of Eg. (52a) the following equation can be
substituted into Eqg. (26):

(1-g,) ] o u g
0..3 w
C——lnpuj— (=) (=2) G5~ J
gw ©® 770 Ve,o 2 qw+l98.6/Tte
(52b)
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while, in lieu of (53a) there is obtained

1, 198.6 -
o= P {3 o T e
€= s (_é-___)(/z) ° te (53b)
Fs s 198.6
T ﬁe
t
e

To complete the formulation ﬁs and the integral appearing
in Eg. (46), namely

—+
Ys

—+

i
i
“<L|e—a
"DZL%-

“I
{
o
8 o

must be expressed in terms of the basic dependent variables.
Here it should be noted that the integration is to be

per formed only up to the edge of the laminar sublayer. With-
in this region the velocity profile takes on the form

v /)

G”ﬂ
Gli~
I
<l

o4
u =

T

where ?+ defines a Reynolds number based upon the shearing

velocity, G+, i.e.,

—+
Y

= ﬁr?m

For the particular values of the law-of-the-wall constants
which are used in this formulation ¥+ takes on the value 10.6
at the laminar sublayer edge. Then the density at this
height is obtained from

~ N 2
(1/p) = H[g +10.6(1-g )/m] + 112.36 (1-H,)/p

while integration yields
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e

1 Ys ~ + ~ _2
I= 2 , /By a7 = H [g +5.3(1-g,) /§1+37.45 (1-1 ) /
(54)
Accordingly, Eg. (46) may be written
Ind=1InIT+ 1n © (55a)

where IT' is given by Eg. (54) while @ is expressed by either
{53a) or (53b) depending on the choice of viscosity-temperature
variation. It is important to note from these relations that
the quantity ¢ has the functional form

o=70 (Xl—ﬁﬁ)

where the dependence on ¥, enters through the possible
variation of both He and Iy*

2. Final Form of the Working Equations

In this section the various equations which
are required for determination of the VP boundary layer be-
havior are presented in final form suitable for numerical
integration. In this system the basic dependent variables
are taken to beyp, m, R, U, 0, %, X with the CP Reynolds
number | considered as the independent variable. Once
these have been evaluated, 8, 0*, cg, etc. follow from the
various auxiliary equations which have been derived. Also
for numerical convenience the algebraic equation for o
is differentiated. Thus, considering the definitions of
T and ‘® which go into the expression for 6 and considering
their relation to the dependent variables, it can be shown
that formally

ar,

(lna)'—[ 3

Joo -0 B S8+ 252 Jtmp) =0 (s5v)

g {1
¢
@I~

can be used instead of Eq. (55a). In addition to the above
equation, the complete system of differential equations,
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YW A

includes Egs. (22),(26),(34),(36),(43), and (44). The
matric representation of. this system is

Ay A, Byg Ay, 0 0 0 (1no) 0
Byr Paz Baz By O 0O 0 (m) ! ,
A31 Ay, By, A34 0 0 0 - (1nR)"' QB
0 0 0 Ay, 0 0 0 || (U ) 1= | c,
Agy O 0 0 Bgs O Ag (1lno) 0
0 0 0 B, A B B, (1nn) ' 0
0 0 0 0 Bog Bog Ao, L(i)' c,
(56)

Explicit expressions for the elements of the matrix are
given in Appendix A.

3. Boundary and Initial Conditions

External Conditions - Since the perfect gas
assumption is implicitly employed in this simplified formu-
lation (cf, Eg. (48)) specification of the external Mach
number distribution M, (x) suffices for the determination of
all external flow parameters by utilization of the
appropriate isentropic relations. For conversion of these
distributions to the variable ¥ it is also necessary to
specify the initial value of unit Reynolds nuMber;(ue/ve)o.
If the Sutherland viscosity representation is utilized
it is also necessary to specify the total temperature of the
external stream (cf, Eg. (51)) which is, of course, taken as
constant in this analysis.

Wall Conditions -~ The wall conditions are
completely characterized by specification of gy which, in
view of the perfect gas assumption is equivalent to specifi-
cation of the wall temperature. The adiabatic wall condition
of course corresponds to setting gw = 1 since the Prandtl
number has been taken as unity. Although not strictly valid it
is of course possible to specify, that gy is a variable. This
would be accounted for in the calculations by proper
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interpretation of the partial derivatives 9IV/8% and 386/dy

appearing in Eg. (55b).
4, Initial Conditions

It is noted that in the differential coefficients,
Aij' of the system (56) no explicit dependence on ¥ or ¥
octurs; accordingly these initial values are arbitrary and
may conveniently be taken to be zero; furthermore, insofar as
7 is concerned it can be shown that this variable appears
only in the combination ﬁ/ﬁo implying again that the initial
value 7 is arbitrary and can be taken as unity. Since the
four dependent variables ¥, 7, R and 0 are related by the two
algebraic equations (38) and (55a) only two of these need be
specified., It will become apparent in the ensuing develop-
ment that the most convenient choice corresponds to speci-
fication of initial values of ¢ and 7. The initial value of
Ue is by definition unity.

One method of specifying these initial values
makes use of a prescribed velocity profile in the VP flow.
In this case the choice of ¢ and 7 follow unambiguously from
the following consideration. Let

R? = (Ge/;e)y ; Ry = (ue/ve)y

Then from the transformation laws it can be shown that

5N N
—~ = [ ¥ par (57a)
o o v

R
'R ~
= = dR 57b
= fo p ar, (57b)

Since the velocity profiles u(R_) have been specified, a plot of
4 versus Rg/G can be generated.” This can be compared with a
series of theoretical velocity profiles within the "law of the
wall" region* corresponding to various choices of 5**. The

* The velocity profile representation within the "law of the
wall" region follows from the latter of Eq. (37) by setting 7=0.
There results u = (A/E)ln(bRy/¢)

** The value of ¢ associated with this choice of ¢ follows

from Eg. (55).
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profile which best correlates the data determines the corres-
ponding initial value of ¢ for the given profile._The _
associated value of # follows from Eg. (38) with Us = 1 and R
evaluated "experimentally” from Eg. (57b).

This procedure was first developed in Ref. 11 and
subsequently also utilized in Ref. 12, It may be thought of
as a generalization of the "Clauser Plot" technique (Ref. 29)
which accounts for the effect of compressibility.

The initialization technique described above, since
it requires specification of velocity profiles at some
streamwise location has application in connection with
experimental results. In the absence of such data it is
necessary to initialize the computational procedures at a
leading edge. 1In this case the same procedure is utilized
for both the simplified analysis and the finite-difference
approach, and thus will be discussed after the details of the
latter have been described.

5. Finite Difference Approach

We consider now a more accurate treatment of the con-
servation of energy equation, Eg. (3). One possible approach
would be to transform this equation into the same imcompress-
ibility field as was done to the momentum equation in Section
II. In this case it would be necessary to derive transforma-
tion rules which would govern the correspondence of the
dependent variable, g, and the parameter, P,, to their
respective counterparts. In fact this approach was examined
by Crocco (Ref. 10) who found that the correspondence between
Pe and Ee was of such complexity as to render the numerical
solution of the energy equation impractical.

Accordingly, the approach taken here will essentially
be similar to that taken in Ref. 32 and 33, which treat the
behavior of the turbulent boundary layer with mass addition
and heat transfer at constant pressure. In these formulations
the transformation is formally applied to the independent
variables x, y.and the velocity components. A modified von
Mises transformation is then used to reduce the energy equation
to a general form of a diffusion eqguation. Standard finite-
difference~techniques are then applied to effect a solution.
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Working Form of the Energy Equation

According to the compressibility transformation
utilized herein the following differentiation rules apply:

oo
Sl

S _ . p
3y "p

- ? 8 3
pu "a"‘}’{" + pv 33; = %n' ) ( %) { [pu ’é‘; + pv —a-§]+
¥ dlno

+[E %

C)
]g-_ﬁ;}'

Applying these rules to the energy equation yields

- ag — 89 dlng, 89 _ On e} 1 ég
Rt st T %) wm-t wmreecwl p_ 3y "
(3a)

2

“ .

e 1 du

*g (1m0 ay]}
e e

A modified von Mises transformation is now introduced such
that

XY " Xed
where
b= VB
then .
3 _Pleo 2 B o2
dx T 3y 7] B3y



and

Substituting the above transformation rules into Eg. (3a) and
recalling the definition of & and % and the fact that

(P /u)
- ,0 dy
1/t = dx/d%X = = 2
(pu k), OR

yields the desired expression, i.e.,

3x 3 (b, o) Ko Pe o0
2 14
u ~2 ~ dlnu,
e 1, 3 dx _ ding _ e, dx. . 9g
fa (1R Tog )t - =R ax 20ay? 5

(3b)

At this point it is necessary to specify the form of the eddy-
viscosity variation (pe+uy). This is provided by the trans-
formation itself in terms of the CP variables. Thus, no
additional empir ical statement in this regard is required.

The desired variation is obtained in a manner similar to that
used to derive Eq. (41l), i.e., the momentum equation (2) is
integrated with respect to the normal coordinate but with the
upper limit of integration considered a variable. Application
of the transformation mles then yields
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v v 'E‘& ud# T e 4
ou? (/7) o\ e T Y (%) "
e e
dinl(u /u_ ) /P )] ) 7
e e,0 e e, 1 d 2 d
: - A =] 8%an - 4 = tan} +
dy (X) X£ K ay o n
(u/u_ ) 7 n
e e,0 ~2 1 —
4 T—{‘(J;udn—fo 5dn}> 0sm=<1 (58)
Thus, since
- c -
pag” L - (T (5h @

Fe \
the terms in the first square bracket in Eqg. (3b) can be
related to properties of the transformation and the CP
solution. It is noted also that

B_ - oo
f dy = R T_ jo Gam (59)
which provides the correspondence between { and u .
Finite Difference Form of the Energy Equation
To generate a solution of Eg. (3b) an implicit-central-

finite-difference scheme is utilized with a variable step
size in the ¥ direction (c.f., Figure 4 ). Let
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=1

£,5 8(0) o /P o) (0 /g o) B/l o)
_ 2
f2 = ue/2He
£, = (1n) '~ (dlnp /dx) (X) (60)

@ = (1/pe) (T/7,) (c/2)/(3T/3%)

©
f

(l-l/Pe)(r/rw)(cf/Z) 2u

Then Equation (3b) can be written

3g_ ¢ 2 s 89
i £.3 [@l + f @2] £y m (61)

Y A Y]

and in accordance with the aforementioned procedure the
following set of algebraic equations evolves:
gn+1_ gn £n
n+l n
mo_m L (L@, +(@))]

aAx (AT )2 (_&+l)_&2m—3 m+l

n+lE ]

+qL @]+ (@) (9)) 4T (@l;fn_l
£ F
Le? +(@)h 1} + =2 (@0, -

m-1 ~ -2
N (1) T
m [ n+l _ n+l ]

g
-2 +1 -1
A (@) T m m

l)m+l

or

n n+l n n+l n n+l n
+ g = F
m “m-1 m “m m “m+l m
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where

= 1 ®.) N ’n 3"
m b ( 17 m+1 + l)m T "3 a
m m
n fl 1 n
Bm = B; [(@l)m+1+(a+l)(¢l)m + CY(@l)m--l:]+ 2§§}
£ £.9 .
n l - . . 3T 1
Am = | < L(éi)m + (Ql)m~lj+ a }
m m
£ £ g
n 12 “m n
R IV R L RS
m=-3 2
a_ = AP (@L)T 5 P(AP)
b
_ .m
c = =
n

— 2
where the order of the truncation error is 0 (A%, AT )
for all m =2 3.%

Here n denotes a generic streamwise station while
m is an index for the mesh in the "normal" direction ¢ -which
runs up to a value M which is determined in a manner consistent
with the edge boundary condition on g as is discussed below.
Note that all of the coefficients appearing in Eq. (62),
which essentially invelve only the fluid mechanic behavior, are
evaluated at a previous station n relative to the g-field
which is to be determined at the station n+l. That is, the
thermodynamics, represented here by gn+1, "lags" the fluid
mechanics as reflected by the AE, B;,m etc.

*At m=2 it can be shown that Eq, (62) is not valid to order
(AP )2 by virtue of the behavior of g in the vicinity of the
wall, i.e., 3g/% - as ¥ - 0. Accordingly, a special form
of difference equations is required at m=2. This special
form is discussed below,
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Consider now applications of the boundary conditions
to these finite-difference equations. At m = M, Eg. (62)
yields

Al n+l + g n+l+ n n+l _ 2
M 9-1 T P Tl T

The "exact" boundary conditions 0g/9Y = 0 as § = @ are
imposed in an approximate way by taking

n+l = n+l
-1 7 Fm+1

Accordingly, the proper form of the difference equation for
m = M becomes

— 1 +1 n

Fn n+ n n+l_

= 63
M $-1 T By Iy Py (63)

where

= n n n
A M AM + CM.

To impose the boundary conditions at the wall the proper
form of difference equation for m = 2 must first be developed.
The details of the derivation will be given in Appendix B.
Basically, the required equation is obtained by recognizing that
in the vicinity of the wall g can be represented by the finite
series*

3 /2
g=2 Gj(x)@j/ n 3 =0, 1,727 ... (64)

*The series is truncated at j=3 to be consistent with the order
of the truncation error associated with the basic finite-
difference scheme.
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Evidently, in view of the boundary condition on g (cf.,

Eq. (10)) the leading coefficient of the series (64) is

simply ¢y. The remaining three coefficients are evaluated

by a forward-three-point-difference scheme as described in
Appendix B. Thus, taking into account Equations(63) and (64),

Equation (51) frem 2....M, can be written in the tridiagonal

matrix form n+l n
— —{ n{- - — -
B, S 92 T,
Ry By G of | 93 Fy
By By Gy 9y Fy
NN N : )

\ \ \ 6 - (65)

-1 °M-1 M-l M-1 M~1
By By e o
g g

where‘Eé, Ez, and FZ are functions of the Gj's as given in
Appendix B,

The above M-1 algebraic expressions when coupled to the
seven ordinary differential equations previously described
yield a system of M+6 equations for the unknowns ¢, 7, R, U_, 0,
%, X and g (€, &8¢, m) wherem = 2,3,...M.

6. Boundary and Initial Conditions for the General Problem

In this case, the linear relation between stagnation
enthalpy and velocity, alluded to in the previous section
as a cuxve fit between the wall and external stream
conditions need not be applicable. Consequently boundary
conditions to be evaluated at the wall, e.g.,[d3/3ylngp],
cannot be expressed analytically but must be compatible
with the finite~difference formulation.
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Wall Conditions - Two cases are considered: for the
adisbatic case (Pii)y, and gy are unknown and must be calculated
as the solution proceeds. For the second case, with heat
transfer the wall temperature is prescribed. Then g,, and
(ﬁﬁ)wcan be calculated from appropriate thermodynamic relations.
To evaluate derivatives for the non-adiabatic case requires
special attention similar to that used to obtain the finite=-
difference equation at the first mesh point above the wall.

In this connection it can be shown that the product pf in the
neighborhood of the wall can be considered to behave in a
similar fashion to g. That is, we take

3 : B
Fi =T R (R0 (66)
j=0 J
from which _
awpn ML T s Y (67)
dy ‘w [RO(R)] 2 ng vy
where
RO = (P#)w

and we have utilized the relations
ai‘l’ 6 (ue/Ve)
RS R
i

(2, =

3u 'w

which follow in a straight forward manner from the previous
formulation. To evaluate the coefficient Ry consider the
power series to be valid at the first three generic points
above the wall, i.e., m = 2,3,4. Then, in terms of the values
of Pii at these points, a system of three algebraic equations
evolves for Rj, R2, and Ry. In particular

R1=Rll(pu)m=4+R12(pu)m=3+Rl3(pu)m=2+Rl4(Pﬂ)w (e8)
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where the coefficients Rij are only Ffunctions of AY and & .
For the adiabatic wall case we take (ég/%?)wz(élnﬁﬁ/a?)wzo .
To determine gy consider Eq. (64) with Gy= 0 since for

3g/dv = 0, (3g/3y)d = 0. Thus in the neighborhood of the wall
2

3/
g =G, + 6,0 + e3P

where

Consequently, by considering the above (g, ¥) dependency to
be valid at the Jirst three mesh points above the wall, again
a system of three algebraic equations results which when
solved for Go (ox gw) yields

g —a + G g (69)

= . +
w GlO = Im=3 *

117 m= G12 m=2

where the coefficients Gl' can be shown to be functions of
AP and o. J

External Conditions - For the general problem, the
external stream need not be considered as a perfect gas
with constant specific heats. However, theinitial state of
the gas must be prescribed together with the external velocity
and presuming that a suitable equilibrium chemistry is
available all other external quantities and their requisite
derivatives are readily obtainable.

Initial Conditions - To start the solution, the
state of the gas must be prescribed at each generic point
of the § mesh. Hence g(¥, x_ ) and u(d,x ) must be considered
known from the wall to the egge of the boundary layer.
Knowledge of these profiles and the appropriate "chemistry"
model then initially fixes all other profiles of thermodynamic
properties, e.g., Pp() and [ (P). The procedure in determining
the initial values of the seven dependent variables, @,7,R,etc.,
is then identical to that discussed in Section II.F.4 except
that the parameter & is evaluated by numerical integration
utilizing the basic relation (46).
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One special consideration arises here in connection
with the parameter (1n&)' which appears in Eguation (3b )
Since the Crocco integral is not valid in this formulation
an explicit value of (lng)' cannot be computed at the
initial station. Twop alternatives may be considered to
initialize the computational scheme. First, a value of
(In0) ' can be initially assumed and an iterative procedure
performed at this first numerical station to obtain a more
accurate starting value. Or, initially. a Crocco integral and
a p, U dependency is assumed, thereby making (lng)' calculable
from Equation (55b). In either case, the subsequent values

of (1lng)' can be approximated by a numerical finite-
difference technique.
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ITI., RESULTS AND DISCUSSIONS
A, The Available pPrediction Methods

As a preface to the subsequent compariscns with
experiments, it would seem worthwhile to acquaint the reader
with the other available prediction methods. The results of the
present approach will be compared to the results of seven
other investigations. Two points of view .are taken here.

One, is to compare with other methods that utilize the trans-
formation of Coles but resort to different closure rules than
those specified herein. In this regard, the works of Lewis

et al, Ref. 34, the procedure of Camarata and McDonald, Ref. 35,
as reported by McDonald, Ref. 36, will comprise this contingent.

The second viewpoint is to compare with analyses which
resort to different computational procedures than the trans-
formation. Consequently, comparisons will be made with the
integral methods of Sasman and Cresci, Ref. 37, Flaherty, Ref.
38, and the eddy-viscosity model of Fish and McDonald, Ref. 39,
as are also reported by McDonald, Ref. 36, who notes that the
latter approach is somewhat similar to the development made
by Herring, Ref. 40,

With regard to the procedures resorting to the transforma-
tion, the method of Ref. 35 reported by McDonald assumes that
the (0/n) scale be proportional to the static temperature.

This assumption was required as McDonald points out since

... extreme sensitivity, indeed singular behavior

was a consequence of deriving the transformation
scale £ Dby simultaneously satisfying the
energy and momentum equations at the wall using
a laminar Prandtl number invariant under the
transformation. coee

In the current method, this difficulty does not exist since

the energy equation has not been transformed and as such no
postulates or empiricisms are deemed necessary in relating

the Prandtl number in both planes. Rather, the energy equation
is solved in the physical plane with one less empiricism
however. The eddy~viscosity distribution required in the
formulation is not a priori stated but inferred from the
solution since the transformation has shown to produce a
correspondence between the local physical shear distribution
and the CP parameters.
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Four basic differences in the method of Lewis, Kubota and
Webbh, Ref, 34, exist when compared to the method herein. One
difference, although not fundamental, is their choice of a
suitable incompressible formulation:; another is the choice of
the "substructure hypotheses" of Coles rather than the "sub-
layer hypothesis" used within. However, the following two are
considered fundamental differences between the two approaches.
Foremost is the necessity imposed by their solutions with
regard to satisfying the laws of "corresponding stations®
whereas in this approach strict adherence is given to the
correspondence of skin friction. The requirement that zero -
pressure-gradient flows must map into their zero-pressure-
gradient counterparts constitutes the last difference.

The integral method of Sasman-Cresci is one which uses
a modification to the standard Mager-type transformation there-
by eliminating the need of assuming that the turbulent shear
stress remain invariant under the transformation. Use of the
moment of momentum equation and an approximation to the integral
of shear are coupled to the momentum equation in the usual
way. Assuming a Crocco integral and a power-law velocity
profile, two equations result with incompressible form factor
and a2 momentum-thickness-Reynolds-number parameter as the
two- dependent variables. A major criticism to this approach
and similar ones is the lack of a more realistic velocity-
profile representation and the possible restrictions imposed
by the assuméd shear distribution. In this context it is noted
here that good agreement between theory and experiment for
gross boundary-~layer properties is not sufficient justification
for stating the suitability of a particular method. In
additiori, it is deemed necessary that the method reproduce
very accurately profile development, or, at least, the rationale
used can be subsequently extended to encompass a broader
problem-solving range.

For comparisons with a finite-difference formulation, the
present approach will be compared to that of Ref. 39. This
procedure evolved by Fish and McDonald, does contain an
extended turbulence model. The results from using this method
have been taken from Ref. 36 which also reports that the Herring,
Ref. 40, eddy-viscosity relationship has been coupled to this
approach., It had been noted, therefore, any differences that
might arise between the predictions of the Herring procedure
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and that which has been reported can only be attributable
to the difference in numerical technique.

Also, the eddy-viscosity and mixing-length distributions
which can be deduced from the present formulation will be
compared to those obtained from the generalized velocity-
profile-concept of Maise and McDonald, Ref. 41.

B. The Experimental Data

Perhaps one of the best sets of experimental information
to date on compressible-turbulent-boundary layers has been
reported by Winter, Smith, and Rotta (Ref. 42)., 1In this study
both boundary-layer velocity profiles and skin friction have
been measured. The very large scale of the model used (5 feet)
and the high unit Reynolds of 2(10)%/ft. is of particular
consequence. Although tests were conducted at six free-
stream Mach numbers, comparisons with only one are discussed
here,

In Ref. 43, McLafferty and Barber have reported a series
of measurements, made in a relatively small wind tunnel, along
a series of highly curved two-dimensional ramps. Rather severe
adverse pressure gradients were imposed which indicated large
normal. static-pressure gradients. Although these investigators
have not measured skin friction directly, skin-friction
coefficients have been deduced herein from the six reported
velocity profiles according to the previously discussed "Clauser
Plot" method.

The flat-plate experiments of Matting, Ref. 44, and those
of Bertram and Neal, Ref. 45, are also considered mainly to
show the remarkably improved agreement that accrues as a result
of incorporating the wake correlation of Reference 15, into the
analysis.

Finally, some numerical experiments are performed whereby
the pressure gradient is maintained constant but non-zero.
Thus effects of pressure gradient and heat transfer on, for
exanple, eddy-viscosity-distribution and mixing length are
reported and wherever possible compared with other existing
theories.
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C. Zero Pressure Gradient Flows

Under this heading of "Zero Pressure Gradient Flows"
two concepts need some clarification before comparisons with
experiments can be made. The first deals with implementation of
the correlation of Reference 13 which was discussed in Section I,
while the latter concerns itself with the choice of initial
values when the solution commences from the leading edge.

1. Correlation of the Wake Parameter

As discussed in Section I, analysis of experimental
results obtained for high speed flows with uniform external
pressure indicated a systematic distortion of the wake portion of
the velocity profile as reflected by reduced values of the Coles'
wake parameter, . In Ref. 13 an empirical correlation was
developed which modifies this parameter in such a way that the
resulting predictions give better agreement with experiment. This
correlation takes the form*

(m)

corr

i

(‘n’)O + 0.425 1np (70)

where (">corr denotes the Cerelated value of the wake parameter,
(w)O corresponds to the nominal value which would apply in the

absence of compressibility and/or heat transfer effects and P is
defined by

P =9y Phin

* Further reexamination of the available experimental data has

led to the conclusion that a more appropriate correlation is ob-
tained if the multiplicative factor .425 is replaced by .53. The
latter value has been incorporated in the computer program dev-
eloped under this contract for use with the "PI CORRELATION"

option (c.f., Part III, p. 16). It is alsc noted here that Eq. (72)
exhibits singular behavior at values of 7 = 2/3, -1. Accordingly,
Eg. (70) is considered to apply only for values of P such that

7 2 =0.25. For P less than this limit the corresponding value

for (m) is taken to be () = _.25.
corrx corr
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The gquantity p_. represents the minimum density ratio within the

boundary layer and, if a Crocco integral is utilized, it can be

expressed as

z 2

e(l”gw) -1

TE-n ! (71)
e

N ]

pmin = {gwﬁe +

Thus, for gy = 1 and Mg = 0, P = 1 in which case the wake para-
meter takes on the nominal value, (7)o, Which corresponds to the
CP value associated with the zero pressure grad.ent case.

In order to apply this correlation in a consistent
manner, it is necessary to examine the properties of the CP
formulation when applied to the zero pressure gradient case. 1In
particular, for any given value of 7=(7)coyr the remaining para-
meters appearing in this formulation (i.e., B, 6} and ﬁ*) mast be
selected in a manner which assures that df/dX = O when dUe/dX=0.
Since this condition must hold for all x it is appropriate to
impose it at the "leading edge" where the corresponding value of
¢ will be denoted by @rg- The desired relation is obtained by
setting 7' = U!= O in Equations (34), (43), and (44). There
results

B(B, m, ©, 7T*)

1l
o

(72)

Accordingly, with ¢ = ¢rg and #* = 0.5, Equation (72) pro-
vides the relation between B and # which is shown in Figure 5.
All of the calculations which have been generated utilizing the
wake correlation and which are presented in the subsequent dis-
cussion have incorporated this relationship. Selection of a
particular value for the parameter ¢LE is discussed below.

2. Initial Conditions for the Leading Edge

There remains now specification of the CP skin friction
parameter ¢LE' At an actual leading edge, of course, the skin
friction becomes arbitrarily large. However, by the same token
the existence of laminar boundary layer regime followed by a
transition region must also be recognized. Evidently, these
features cannot be included in a rigorous way within the context
of the present formulation.
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Accordingly, this initial condition is imposed in an
approximate manner. For this purpose we follow Coles, Ref, 9
and take

It is noted that Lewis, et.al., Ref. 34 also associate the value

18.4 with the "leading edge" of a fully developed turbulent
boundary laver.

3. Experimental Comparisons

The improvement in the prediction of skin-friction
with momentum-thickness variation by use of the present
transformation together with the above correlation is clearly
indicated in Figure 6. 1In Figure 7, the velocity profiles
generated from the solution are compared with the experiments
while in Figure 8, comparison is made with some of the profiles
generated without the use of the wake correlation. Again,
the improvement is clearly indicated. Figures 9 and 10
compare respectively the momentum-thickness-Reynolds number
and skin-friction coefficient with Reynolds number with and
without the use of the correlation law. 1In addition to the
good agreement afforded by the use of the correlation, these
two figures additionally show that the procedure previously
discussed of picking an initial value of () as well as (m)
is well posed.

D. Two-Dimensional Pressure Gradient

For pressure-gradient flows comparison is offered between
the present method and the four selected procecures of Ref. 36.
In fact, FPigure 11 is a reproduction of Figure 11 of this
reference with the results of the present theory added. This
figure compares the results of several approaches with one of
the sets of the McLafferty and Barber experiments. Slight
improvement is afforded by the present approach when compared
to the method of Ref. 39, However, the results from this
method, as indicated in Figure 11 of Ref. 36, and herein
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terminate approximately at station x = 0.21 feet while the
present approach continues; hence, further comparison cannot
be made.

An important note to be considered in drawing conclusions,
when comparing these various results,is the fact that the
present solution starts at station x = 0 and uses the experi-
mental profile there to generate the initial starting values
while the other four analyses are initiated further upstream.

In addition to the momentum-thickness and form-factor comparisons
to the McLafferty-Barber experiments, made in Figure 11, Figure 12,
compares the present results with the integral method of Ref. 37
and the transformation method of Ref. 34. The "experimental"
values of skin friction shown have been obtained by the use

of the "Clauser Plot" method which has been previously
discussed. Clearly, all: three methods predict, rather poorly,
the skin-friction development over the entire portion of the
model. For the first half of the model however, the present
approach is significantly an improvement over the other
transformation method. Again, it is believed that closer
correspondence between the two transformation methods can be
achieved by imposing identical initial conditions. Figure 13
draws attention to the ability of the transformation approach

to reproduce more accurately the velocity-profile development
than other integral approaches. Notable also is the improve-
ment afforded when the wake correlation is coupled to the
transformation. Again, it must be reiterated that this corre-
lation is strictly an empiricism. However, its indicated
improvement lends further credence to the idea of a multiple
stretching formulation of say the y-~coordinate where

one transformation law is valid for some range while beyond

that range another stretching law becomes applicable.

E. Axi-symmetric Flow with Pressure Gradient

To investigate turbulent-boundary-layer growth under the
influence of both favorable and adverse pressure gradients the
experiments performed by Winter, Smith and Rotta were chosen.
These data, although complete and carefully taken and in some
instances when the pressure gradients not too severe, does include
effects not considered in the analysis. For example, the
change in lateral curvature which can produce strong
convergence or divergence of the streamlines is not part of the
formulation. Notwithstanding)the candidate experiment for
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the theoretical comparison was that performed at M{sz and a
unit Reynolds number of 2(10)6/ft, The governing differential
equations used were those obtained by the formal applicatiomns of
the Mangler transformation and are discussed in Appendix C,
Figure 14 compares the results generated using the present
approach with the theoretical method of Herring and Mellor,

Ref., 40. . The circles indicate the experimental values obtained
directly from the profiles, and the squares indicate the values
calculated with the von Karmen momentum-integral equation
beginning with the initial experimental value of 6 and the
experimental values of cg and 6*%/8. The darker squares indicate
the values of skin friction which were obtained from the
"Zlauser Plot" method. 1Initial conditions were obtained by
examining the velocity profile at x = 20 inches from which a
suitable value of ¢ and 7 were inferred.

In general both theories agree well with experiment with
slight improvement indicated by the method of Ref. 39 which
attempts to account for the convergence and divergence of
the stream~line. Also both methods tend to bracket the experi-
mental cg distribution with the present approach underestimating
the experimental results.

F. Eddy-Viscosity Distributions

Perhaps the most significant feature of the approach
employed is that the compressible,kinematic eddy viscosity,
€(X,y), can be obtained as part of the solution. In this
instance the analytic procedures were coupled to a Crocco-
integral energy solution and the eddy-viscosity behavior
in high-speed flows with and without heat transfer and pressure
gradients was studied.

l. Zero Pressure Gradient; Adiabatic Case

Before discussing the high-speed results, Figure 15
compares the low-speed formulation with the flat-plate
experiments of Klebanoff, Ref. 47. As indicated the agreement
is excellent. For high-speed, zero-pressure-gradient, zero-
heat-transfer cases, Figure 16 shows the variation of eddy
viscosity through the boundary layer for one momentum-thickness-
Reynolds-number and three Mach numbers.
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Comparison is made-with the theoretical approach of Maise and
McDonald, Ref. 41, and as can be seen the agreement is rather
favorable. The corresponding shear distribution together
with the Mg = 0 and 5 results of the above reference are shown
in the next figure. Clearly, Figure 17 shows that the distri-
butions are independent of Mach number at least up to M_=2.
For the MeSS case, the shear distribution generated by %he

two methods differs to some extent only within the lower half
of the boundary layer., However, the agreement between the

two methods is much more improved here than that shown in
Figures 4 and 12 of the aforementioned reference. In those
figures a comparison is made between shear and eddy-viscosity
distributions obtained using the Coles transformation and the
generalized-velocity-profile method reported therein and shows
the results of both methods to be considerably different. The
application of the transformation method which was used there,
relies on the Coles substructure hypothesis together with a
Spalding-Chi skin-friction law and the Crocco energy relation-
ship and is considerably different from thatwhich is employed
here. Thus the closer correspondence between the two methods
indicated therein in contradistinction to that shown by Maise
and McDonald disproves to some extent their conclusions as

to the suitability of the transformation for predicting
compressible shear-stress profiles. 1In fact, the conclusion
that, at least up to Mach number of 5, the incompressible
distribution of mixing length can be used in a compressible
formulation is in disagreement with the findings of the
present results as attested to by examining Figure 18. It

is the contention here that the agreement between the two methods
only up to a Mach number of 2 indicates that the generalized-
velocity-profiles used therein are only applicable up to that
Mach number, beyond which the generalization used becomes too
restrictive. '

By examining Figure 19 it is noted that the dependency of
eddy viscosity normalized with respect to displacement thickness
becomes less dependent on momentum-thickness-Reynolds-numbexr
as the Mach number decreases and that up to a Mach number of 5
its dependency with Reynolds number beyond a value of (lO)5 is
severely reduced.
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2. Zero Pressure Gradient, Non-=Adiabatic Cases

The next five figures tend to exemplify the effects of
heat transfer on shear, eddy-viscosity , and mixingelength
distributions. First, Figure 20 indicates that for a given
Mach number and Reynolds number, the effect of heat transfer
on shear-stress distribution is rather small showing at most
a 2% variation between the adiabatic case and that for which
the wall temperature is half the external total temperature.
However, comparing Figure 21 with Figure 16 indicates that
although the variations of the parameter, s/ueé*, with 7 are
similar, the effect of heat transfer is shown to substantially
increase the value of this parameter throughout most of the
boundary layer. In addition, the effect of heat transfer, on.its
maximum value, is seen in Figure 22 to diminish with Mach
number for a given Rg . It is recalled here that these
are deduced from results generated by using a Crocco-integral
formulation and not the most general approach which has been
derived., Thus, evidence of a decreasing dependence of Mach
number and heat transfer rate on the eddy-viscosity distri-
bution as the Mach number increases should be substantiated
by the more general approach derived since it can include
"real gas" effects and appropriate models of laminar and
turbulent heat transport coefficients. Heuristically speaking
however, it is felt that a reduced heat-transfer-rate dependence
on eddy-viscosity can be shown to exist if, as Maise and
McDonald, at the suggestion of Herring and Mellor, have shown
for the adiabatic case, that a reduction of Mach number
dependence on ¢ occurs when the eddy viscosity is normalized
with respect to a thickness based upon velocity defect rather
than mass defect.

With regard to mixing length, Figures 18 and 23 tend
to show that no uniformly valid correlative properties which
will tend to reduce the Mach number dependency for flows beyond
a Mach number of 2, are likely to exist. However, Figure 24
which shows the effect of heat-transfer rate on mixing-length
distribution for a given M, and Rg does intimate to some extent
a similarity in profile development with heat-transfer rate.
Further study is required, however, before these conclusions
can be substantiated.
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3. Press

In addition to the numerical experiments performed
with zero pressure gradient, several "solutions" have been
generated which have taken into account pressure gradient as
well as heat transfer. In this connection the pressure gradient
has been imposed by considering flows wherein the parameter

(1/py) (dp/dx)

is considered constant. Considering a perfect gas with constant
specific heats and the fact that the unit Reynolds number can
be made a function of Mach number, total temperature and total
pressure, then it can be easily shown that similar solutions
result if the parameter

dlp/p,) X

is kept constant.

Figure 25 summarizes the results with regard to the
variation of (e/ugd*) 5y with initial Mach number Me,o which

have been obtained by imposing constant values of the pressure
gradient parameter under both adiabatic and non-adiabatic

wall conditions. Preliminary examination of this figure
indicates that for initial Mach numbers less than approximately
2, the eddy-viscosity hehavior is somewhat insensitive to
moderate pressure variations. However, this degree of in-
sensitivity is reduced considerably with heat transfer.
Accordingly, the possibility of developing conclusions to
describe the details of turbulent-boundary-layer flow develop-
ment when a pressure gradient prevails from laws generated

from flat-plate results appears to exist only for low to
moderate Mach numbers. Indications are that the maximum value
of (L/éb for a given Mach number, decreases with increasing
pressure gradient and che result that this variation increases
with the increasing Mach number is shown in the next figure,
i.e., Figure 26. Figure 27 compares the variation of the shear-
stress integral with pressure gradient and compares it to the
empirical law of Ref. 37 in which the shear integral, plotted
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in the manner shown, is considered invariant with pressure
gsradient and Mach number. Figures 28, 29, 30 and 31 tend to
quantize the effect of initial Mach number and momentum-thic
Reynolds-number on shear, eddy-viscosity and mixing=length
Aistributions. Consequently, the results indicated are

depicted for only one value of (1/pg(dp/dx) with the additicnal
affect of heat transfer on such behavior being further portrayed
by Figures 32 and 33. Thus by examining Figures 28, 29 and

30 it appears that for a given value of the pressure gradient
parameter and Rg no ordered variation of (T/Tw), (€/ugd*) or
(£/8) with Mg, exists. However, Figure 31 shows that the
addyeviscosity distributions are more sensitive to changes in

Rg than the mixing lengths are. As far as heat transfer is
concerned, increasing the heat-transfer-rate reduces the shear-
stress distribution while concomitantly increasing the mixing-
jength distribution as Figures 32 and 33 depict.

TR
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G. Extensions to Statistical Turbulent Studies

The possibility of relating statistical turbulent concepts
o transformation properties has also been examined briefly.
it is concluded that no direct relation can be obtained by
the use of the transformation. The reason is inherent in the
form of the transformation since it has only been applied to
temporal-mean quantities thereby producing no correspondence
between these fluctuating terms in both planes. However, some
indirect information which can possibly provide a deeper
insight into the turbulent mechanism can be obtained by studying
the ramifications of the transformation with regard to the
concepts of intermittancy. It is noted that the low-speed
formulation described herein has the capability of generating
the parameter since the intermittancy, 7, is defined as
the ratio of © with (?)m x ° To deduce the corresponding be-
havior for the high-speeg case, it is assumed that the inter-
mittancy is related to the eddy-viscosity by the relation

y = ﬁs/(ﬁf)max (73)

the results of which are shown in Figure 34.

Insofar as turbulent kinetic energy is concerned, several
investigators (c.f., Ref. 48, 49) have treated the low-speed
problem by solving a system of eqguations which includes the
conservation of turbulent kinetic energy. The proponents
of this approach generally believe "that the connection between



the turbulent shear stress and other properties of the turbulence
is very much closer than the connection between the turbulent
shear stress and velocity field". 1In fact, it is asserted in
Ref. 49, that improved results are obtained by assuming that

the turbulent kinetic energy is directly proportional to the
local shear stress.

If such an approach does indeed provide improved pre-
diction capability for low-speed flows, it would evidently be
useful to have available a transformation which can be applied
to this additional auxiliary equation.

At this time all of the ramifications of the concept de-
scribed above have not been examined in detail. Nevertheless,
it can be said that this approach is likely to prove useful
and further exploitation is recommended.
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IV. CONCLUDING REMARKS

The results cited demonstrate that by suitable implementation
»f the compressibility transformation and by proper interpretation
of their implications a wide variety of variable-property-
turbulent-boundary-layer problems can be analyzed with a minimum
of empiricism. The results have shown that a suitable constant-
property-solution has been coupled to the overall formulations;
however, the conceptual ideas of the transformation and the
implications pertaining thereto, do not preclude the possibility
=»f a "marraige” of the transformation with any other "suitable"
CP formulation. Furthermore, there has been removed the usual
necessity of prescribing in some manner the compressible-eddy-
viscosity distribution, since the analysis replaces this
restrictive requirement with a much simpler task of assuming the
form of the well-known incompressible velocity field. 1In
addition, no restrictions have been posed on the energy field.
Noteworthy here is the fact that if a suitable constant
property solution involving mass transfer and pressure gradient
axisted then the above approach can also be coupled to species-
conservation equation and as such the study of turbulent com-
pressible flow with mass and heat transfer as well as pressure
gradient could be formally effected without the requirement
of knowing how the Lewis number or turbulent Schmidt number
have to be transformed.

It is evident from the comparisons between experiments
and other theories that the present approach must be included
in the 1ist of suitable methods for predicting compressible-
turbulerit-boundary layer development. Its de-emphasis on
certain empiricisms used in other methods, e.g., compressible
eddy-viscosity laws, mixing length hypothesis, shear-integral
distributions and generalized-velocity profiles is considered
to make this type of an approach more suitable for studying
other complex flow structures.

Unfortunately, however, further justification of the above
conclusions cannot be made because of the dearth of suitable
experiments which are wholly devoted to the study of the
compressible~turbulent mechanism.
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Comparisons with "available" experiments shown and the
conclusions obtained therefrom lack definitiveness because

most “"present-day suitable-experiments” inherently contain
either three-dimensional effects, transverse curvature effects
and/or the existance of normal pressure gradients; three
factors not included in this and the comparable theories.
Also, knowledge of the thermodynamic behavior within these
experimental boundary layers is either completely unknown
and a priori assumed or subject to question.

Nevertheless, an optimistic viewpoint has been taken
and several forms of numerical experiments have been performed.
As such, the preceding analysis has indicated, heuristically,
the effects of pressure gradient and heat transfer on eddy
viscosity, shear and mixing length distributions. A correla-
tive study showing the effect of pressure gradients on these
properties has been attempted by considering flows wherein
the pressure gradient is held constant and non-zero.

These results have shown that for the adiabatic case,
at least, most theories which do not account for pressure
gradient in their empirical laws are to some degree only
applicable to flows up to Mach number of two. With heat
transfer, the variations of eddy-viscosity and mixing length
diverge strongly from the norm - the zero pressure case -
before a Mach number of two is attained. This divergence in-
creases as the pressure gradient increases.

5




APPENDIX A

THE PROFILE PARAMETERS Il 2 3 AND ELEMENTS OF MATRIX Aij

Velocity Profile

— 2 B
4, = RO_7/p 0 <7 = ng
4 = B _ _3 __2
=1+ (A/9) [1nn - 2m (27 =37 +1) )
7% <n =1
Integral I,m = f udmn
o]
— 2 2
RU_ (7 /2) (1/5) O <mn =ng
I, m =
nl1l+(a/9) (ag+27q) }-1, (11,7 s)+I) (1.7 )
B ns <71 =<1
_ T,
Integral Iz(n)f jo u “dn
— 2 _3 _a
(RO (M /35") 0 = mn =
I, () =
— - 2
ML1+2(A/8)" (q,+27q,+27q,) +2 (3/3) (ag+27q,) ]

_Iz(IIlns)+:[2(IlnS)
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TPy e e VT 1o N T By 4 (1w AT (7
5 (1) (B,G -1)7 + H_(1-G ) T (M + (1-H )T, )

In addition to the above integrals we also require their
derivatives with respect tu (¥). Accordingly,

( 1, [1nR) '+ (InT,)" - 2(1n®) "] 0 <7 S

(1) =4 10-(8/8) (az+2Tay) (np) +(8/0) (2q) (1))

| ‘_r- ' n <
Il(II,/S)+Il(I,nS) ns <7 1

( 1,[2(1nR) " + 2(1nU,) "' - 4 (1np) '] 0<€msn

_ 2 _ 2
n {-(28/0)" (1ng) '[q,+2Mq,+27"q, ]

L o 2
(12) < +2 (A/©) [2'q3 (1) ’+4q4‘ﬂ‘('ﬂ') "
-2 (a/g) (1ng) ' (q.+2mqy) +4 (/D) (qp) (T) '}
~T'(IL D ' 7 < <
\ I, (mn ) + I, (1.7) ng,<nsl
Where the connotation of Ii(II,ﬁS), Ié(II,ﬁS) ... etc.,
is similar to that used for Il(II,ﬁS), I, (11,7 ),... respectively.
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where

s
Il<1'ﬁs):l£ uIdﬁ = RUe(ﬁ 72) (L)
g -
= u n =7 /o 2%
I, (11,n) fo u, A = 7 [l+(A,50)(q5’S+ q6's)]
ﬁs 2 22 3 4
I, (I.7)= £ aldn =R U, (M_/3) (L)
7 )= s 2 qm=7 (142 (/) 2 2 202 )
Iz(II”s - L} Uy d7=TG L @) (q2,s q3,s+ Lf q4,s
2%
+ 2(a/P) (a5 +2Tq, )]
where
— 2 -
T, = 172(1nM) - (lnm) + 1
- =3 2 _3 _2
dy = (In) [-(7/3)+T =17 + (7 /8)~(7 /2) +1
— - 4 3 _2
q = /) T - 20 4 (9/5) M+ - 2T 4l
Gg = Ing - 1
q6 = -(1/2)53 + ﬁz -1
and qj s with j = 2,3,4,5,6 implies that the above expressions
are evaluated at ﬁs . Although it is not formally required

here, an additional parameter is needed in the analysis, namely,
2
q; = 2 + (19/6)m + (52/35)7
. —ﬁ- ~
Integral I3ln)z { (1/p - 1)ap

(o]

If a Crocco integral is used then S = p(ﬁ) and I

3
becomes
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Non-zero elements of matric Aiﬁ

Al,l =1+ &/a
A, , =10
By, 3= 2.0
Al,4 = =1,0
By 1 = 2q,(8/@) - (1+M)
By o= (l+n)-ql(A/¢)
Ay, =1~ (A/®) [ (19/6) + (104/35)m)
By 4 = 3(14m) - 2q, (2/¢)
= bl —-= 2 ~~
By = T (B/P){-4(B/0) (q,+2Tq,+27 q4)+[(u)ﬁ*—2)]q5+2"q6)}
Ay 5 = L) -, T, ()
By, 3 = () (8/B) [4(3/8) (qy+27q,) -2q, (T -2) ]

By 4 = 2L, (A - g, T, (7*) - H*

Bga=1

A, | = -{dInl/d1lng + Aln®/dlng)
By 5 =1

ag , = -[dInl/dx + d1n®ay]
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6,4
Ag g = 1

Ay o= -1

Ay = d/dx[ln(ue/ve)]
A, g = -2+

Ay o= (1+ /B

b
I
4 2l
Mol

dlnu : dlnk
= = o*_ + = 2 +
7.7 dx 2] dx

2— -1 . . ~ e e
- @RD (G 6,) (/) ()

F 5]

C, = 1/(Rod)
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~(1/p) 2 3
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.~ 2 _ ~r
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APPENDIX B

— n+1 — n+1
DERIVATION OF THE EQUATION C,9, + B,g. = F
I 1

299
L o

A

The finite-difference equation associated with the first
$~mesh point above the wall, i.e., at % = % = A@ , must
have coefficients C,, B.,and F2 properly in%erpreted to reflect
the singular behavior of (3q/3)) and (3d/3y) at the wall.
However, because of the "physics", g must be a regular
function of # and hence can be expanded in a power series.
In the neighborhood of the wall and within the laminar sub-

layer it can be shown that

o=/ 20/0 (B1)

Accordingly, a power series of g with u necessarily requires
a power series cf g with ¥ to be of the form

n /2
g= 2 o (x P’ (B2)

where only the first four terms are required to be consistent
with the order of the truncation error. Thus, in the
vicinity of the wall g behaves like

_ 3 ~3/2
g =06, + 6P + G2$ + G¥ (B3)

where

Considering that the first three mesh points above
the wall, i.e., where

$2=A$Eaz
Py =0, + @ A= AT (14T) = (ab)? (B4)
b, = AT (14G+G2) = (ac)?




to be within the laminar sublayer and applying Eg. (B3) to the
points m = 2,3,4, yields a system of three algebraic eqguations
for the three unknown ceoefficients, G,, G,, G,. Solving for

i F4

3
I

Gl,2,3 yields fprmally
3
Gy =j=0 Gy 9 (4-3) i=1,2,3 (B5)

Wwhere

G,y = ba” (b-1)/A

Gll = czas(l—c)/A

G, = bzczas(c—b)/A

Gy = =(a/8) (b (b=1)+c” (1-c) b7 (e-b) ]
with

A= a®bc [(bz—cz) + be (c=b) + (c=b)]
and

Gpg = GlO (1+b) /ab

Gy = —Gll(l+c)/ac

G,, = =G, (c+b)/abe

G,y = —(a4/A)[(b2—c2)bc+b(14b2) +c(c2-1)]

G30 = Gld“azb)

Gy = Gll/(azc)

G3p = 613/(azbc)

Gyy = —(a>/A) [b(b-1) +c(l-c) + bec(c=b)]
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Differentiating Eqg. (B3) and evaluating at the first mesh-point
bove the wall yields after substituting Eq. (B5)

o))

3
el =
( )y = T G,. 9 (4-]) (B6)
3 'y oo @3
where
sz = (1/2a) Gy *+ Gy * (3/2)a Gy

Likewise for the second derivative, it can be shown

2 3 .
) ~ 4-
(572 = T & g7 (B7)
2 j=0
where
&. = - (1/4a°) G,. + (3/4a) G
25 * 13 33
Now substituting (B6) and (B7) into the energy equation
with (3g/9¥%) replaced by its finite difference form and
collecting terms yields the expression
3 -
I Ty, 9(4-3)=0 (B8)
1=0
where
- _ -

25 = (£, (0a/0d)=f39], Gy + £y (8], Gy

for 3 = 0 and 1. While for the index 2 and 3 a slightly
different expression is required

G,, = [fl(a¢/a$) - f3$32 G, + £,(q), 522—’(1/5’2)
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and

. e = 3}
Gy3 = (LEOK) = £59]) Gyatfy (8))5 Gy ¥

2
(@), I [£,£, 0%,

2’2 o2 (2
(g, 9, (aiﬁ

substituting Eq. (Bg) into the finite-difference form of the
snergy equation for the § = §, mesh point, thereby eliminating
{g), yields the desired equation for the b = ¢2 mesh point, i.e.,

C2g3 + qu2 = Ez (R9)
snere

T, = C3 G, - By Gy

B, = C, 522 - A, &‘20 (B10)

Fy = G _823 B é20

It is noted further, that additional modification is
required for Eqg. (B9) and hence Eqg. (B10) for the adiabatic
wall case since, as will be shown below, Gl:E~O in this case,

Adiabatic wall implies that

[ANe
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and since

3u |

gb ) # 0

Y iw

then adiabatic wall reguires G} = 0. Now to arrive at an

equation of a form similar to Eg. (B9 the procedure is the
same except that G} = 0. 1In this case the same formation as

above can be applied; however, it can easily be shown that the
following modifications are reguired.

Thus for adiabatic flow set
sz =0 i =20,1,2,3

and re-define

3
GZ]_ = ---aG3l - a /A
3.3
Gyp = —3PCGy, =D a/p (B11)
3 3
Gyq = 2Gg, = -(a”/a) (b -1)

A= ab (b-1)

Also, for adiabatic flow g, cannot be prescribed but must be an
outcome of the solution. Considering Gy = 0, and now G, as the
unknown wall enthalpy value, then in a manner similar to that
in obtaining Egq. (B5), it can be shown that

2

3 = = . - 12
o = 9w =5 G159 9(4-3) (B12)

e} LA
with Glj‘s defined as those shown below, Eq. (B5).




To complete the formulation for the wall region also requires
sxpressions for (3¢ /3)) and (6@2/8$) at the first mesh point above
the wall. Repeating the same arguments as above, the shear
distribution T/T4 can be considered regular and hence expanded
into a power series of U. Now near the wall U ~ ¥7? hence

~ (T 3%y = v 3/2
(él) ( /TW)/(au/aw) i Pij Y (B13a)
rikewise since

7 3/2
Pos ) (B13b)
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Y o~ / a) =
(&) ~ (T/7) @)=
j=1

Truncating the power series after the second termand assuming
that the expression is valid at the two mesh points above the
wall yields two algebraic equations for each of the Pij's and

sz‘s. Thus
P = (aZ/A) {bz(%) - (&)} (Bl4a)
ml 2 m’' 3
P ,= (a/8) [(®); -b(2), ] (B14b)
where m = 1,2, and
A= a3b(b_l)

These four expressions are all that are required to evaluate
the derivatives of @l or @b at wz since

Y] \
. - Lo
8$ I = 2a ) Pml * Pm2 (B15)

withm= 1,2,
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APPENDIX C

REDUCTION OF THE AXISYMMETRIC EQUATIONS
TO THE TWO-DIMENSIONAL FORM

The equations of mass, momentum, and energy for a
turbulent boundary layer over a body of revolution with
the boundary layer thickness considered to be much smaller
than both the lateral and longitudinal radii of curvature
are instead of Eg. (1), (2) and (3), the following:

) 3 ,
Py (x pu) + Y (rpov) =0 (Cl)
Q a
2u 2w _ _dp L3 2u
pu 3 + PV 5. = ax + 3y [(pe+u)ay ] (C2)
a a a a a

~2

og 3g _ 8  (petw) 239 2 , _ au”
pu o + pv oy, aYa[ p_ ( Bya)+(ue/2He) (Pe+p) (1-1/P ) (aya)]
(€3)

where the subscript "a" infers that the coordinates x and y
are respectively along and normal to the surface of the axi~-
symmetric body, L is the radius of the body of revolution and
is considered as a function of Xy only.

The procedure taken here is to formally apply Mangler%
transformation to the above three equations, thereby reducing
them to their corresponding two-dimensional forms. Thus,
by considering a coordinate transformation of the form

1 y- ]

_ a 2 R _ a

(x—xo)z_D— f ) (rw/L) dxa ; Yo b= fo (rw/L)dYa (c4)
a’o

where I, is some reference length which is to be determined. There
the above three equations can be formally transformed into
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their two-~dimensional counterparts. The implication of the
e on o qon o e
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displacement thickness, for example, to transform as

(T), = Ty_p(r,/T) (cs)
(@), = 0, /(x /L) (cé)
(6%) = (6%) _/(xr /L) (c7)

To complete the problem and to properly effect the transforma-
tion back into the physical axisymmetric plane requires
specification of the reference length, L. To determine L
consider that at some point on the body, i.e., (xa)o all

profile information as well as all external quantities are given.
And at the corresponding stretched point in the two~dimensional

plane, i.e., (XZ-D)O the skin fric’ ion, the external velocity,

temperature, Mach number, and unit Reynolds number are the
same as those which occur at point (x_) then it can be easily
shown that for this correspondence to exist

L = (rw) (x ) (C8)
a o
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